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Biological context

In the Rous Sarcoma Virus (RSV), the C-terminus of
the Gag polyprotein contains the protease (PR), which
must proteolytically liberate itself to realize full ac-
tivity. In mature virions, approximately 7% of the
PR population is missing the first three N-terminal
residues (Pepinsky et al., 1996). This truncated form
(RSVPR1LAM) arises from an alternate autocleav-
age site three amino acids (Leu-Ala-Met) downstream
of the primary site, and exhibits markedly reduced pro-
teolytic activity (Schatz et al., 1997, 2001). Crystal
structures of uncomplexed wild-type RSV PR dimer
(Jaskolski et al., 1990) and specificity-engineered
RSV S9 PR dimer in complex with a peptide inhibitor
(Wu et al., 1998) have been determined. As with other
retroviral PRs, the N- and C-termini of the mature
enzyme form a four-stranded intermolecularβ-sheet
that is essential for dimer stability (as reviewed by
Vogt, 1996). The RSVPR1LAM N-terminal dele-
tion is expected to abolish this importantβ-sheet and
consequently destabilize the dimer. Dimer formation
is widely believed to be the rate limiting step in the
activation of PR, necessary for virion maturation. Con-
sequently, structural insight into monomeric PR is of
great interest in elucidating the mechanism of protease
activation in the virus life cycle as well as from a drug-
design perspective. Here we present the backbone and
side-chain assignments of RSVPR1LAM.
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Methods and experiments

RSVPR1LAM is a 121 amino acid protein with a
molecular weight of 13.5 kDa after purification and
proteolytic cleavage. RSVPR1LAM was expressed
in E. coli BL21 cells, harboring a pET11 (Novagen)
derived vector.15N/13C-labeled samples were puri-
fied from cultures grown in13C and 15N enriched
MT-9 CN medium (Martek), and15N-labeled sam-
ples were prepared from M9 medium containing15N
NH4Cl (Martek). After induction with 1 mM IPTG,
cultures were incubated overnight. Inclusion bodies
were collected from sonicated cell lysates, washed
and then dissolved in 20 mM Tris, pH 7.5, 7 M
urea, 10% glycerol, 5 mM EDTA. Denatured pro-
tein was refolded by dilution with 20 mM Tris, pH 8,
20 mM NaCl, 5 mM EDTA, 10% glycerol, to a final
urea concentration of 1 M, clarified by centrifuga-
tion and was passed over a DEAE column. The flow
through, containing the RSVPR1LAM, was collected
and dialyzed into NMR buffer (20 mM Na phos-
phate, pH 6, 100 mM NaCl, 1% glycerol, 0.4 M
urea, 10 mM DTT). After removal of precipitate by
centrifugation, the supernatant was concentrated by
ultrafiltration (Millipore) to a typical concentration of
3 mg/mL and supplemented with 7% v/v D2O and
0.25 mM AEBSF (Sigma). The relatively low concen-
tration of protein and the presence of urea and glycerol
in the sample were necessary for optimum solubil-
ity and to retain predominantly monomeric protein as
assayed by dynamic light scattering. The15N/13C-
labeled sample was exchanged into deuterated NMR
buffer by dialysis after all amide proton-observed
experiments had been completed. All NMR experi-
ments were performed at 298 K on a Varian Inova
600 spectrometer. The15N-labeled samples were used
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to collect 1H-15N HSQC, 2D homonuclear NOESY,
2D homonuclear TOCSY,1H-15N NOESY-HSQC and
1H-15N TOCSY-HSQC spectra. The13C/15N double
labeled sample was used to collect1H-13C HSQC,
HNCA, HNCACB (optimized for Cβ), CCC-TOCSY,
HCC-TOCSY, HNCO, HCACO, CBCACONH,13C-
separated NOESY and HCCH-TOCSY spectra. The
backbone was principally assigned using Cα and
Cβ resonances (from CBCACACONH, HNCA, HN-
CACB and CCC-TOCSY), and verified using15N
NOESY in conjunction with15N-TOCSY and HCC-
TOCSY spectra. Known1H-13C correlations were
used as starting points to assign spin systems in
the HCCH-TOCSY. Aromatic ring systems were as-
signed using the 2D TOCSY and NOESY spectra
and information fromβ-strips of 13C NOESY spec-
tra, Trp ε1-strips of 15N NOESY and the aromatic
13C HSQC. Carbonyl resonances were assigned us-
ing HNCO and HCACO spectra. Detailed descriptions
of these experiments have been reviewed elsewhere
(Cavanagh et al., 1996). Spectra were processed with
NMRPipe/NMRDraw (Delaglio et al., 1995) and ana-
lyzed with PIPP (Garret et al., 1991).

Extent of assignments and data deposition

Backbone assignments are complete with the excep-
tion of N-terminal residues T4 and M5, as well as
S29, Y31, D92 and R93, all presumably absent due
to chemical exchange. Figure 1A shows the1H-15N
HSQC spectrum of RSVPR1LAM. Only one of
the side-chain NH2 resonance pairs was successfully
identified (N123). Due to the relatively low concentra-
tion of the sample (0.22 mM), not all residues gave
rise to discernible signals in many of the double-
and triple-resonance experiments. Consequently, side-
chain resonances are not as complete, with∼81% of
protonated13C and∼79% of nonlabile1H resonances
unambiguously assigned. Consensus CSI predictions
(Wishart and Sykes, 1994), as shown in Figure 1B,
include portions of every secondary structural fea-
ture found in the wild-type crystal structure (Jaskolski
et al., 1990), excepting the N- and C-terminalβ-
strands. The consensus CSI contains a gap in the
β-strand prediction for the two residues prior to the
β-bulges found at residues D78 and R93 in the crys-
tal structure. RSVPR1LAM assignments have been
deposited in the BioMagResBank (accession number
4839).
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Figure 1. (A) 2D 1H-15N HSQC spectrum and assignments of
RSVPR1LAM. G69 and G70 cannot be unambiguously differ-
entiated (B) Consensus CSI predictions (gray) and wild-type sec-
ondary structure (black). Standard retroviral PR secondary structure
nomenclature is noted.β-bulges found in wild-type structure are
denoted by asterisks (∗).
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